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® Tsunami capability of HF radar

® Discovered, reported by Barrick in 1979 — ignored for 25 years
® Interest again after 2004 Banda Aceh: CODAR simulations began

® Real data first captured 2011 from strong Japanese tsunami:
16 SeaSondes as much as 8500 km apart
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® Tsunamis are not observed via height — rather by orbital

velocity from shallow-water wave physics
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Ultra-Compact New Tx/Rx Antenna J)J
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® We started in 1970

with large phased
array antennas: 500
m lon
. Combined Tx/Rx
Antenna System
® At NOAA, switched to at 13 MHz

compact two-unit
antennas




What Does It Look Like?

Environmental Enclosure:
TmMxXTmx05m

www.codar.com



SeaSonde Tsunami Software Status & Future | <~~~
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® Version 1: based on theory/simulations after 2004 event

¢ Pattern recognition based on assumed idealized spatial pattern

¢ Abandoned after real data captured in 2011 (too idealized)

® Version 2: based on recognizing expected temporal patterns in

velocity time series, work of Belinda — preparing to install




Version 3: Understand Space-Time Tsunami )))
Patterns Based on Bathymetry/Hydrodynamics |...SORAR .
Underlying Equations and Resulting PDEs

Work of Dr. Don Barrick
® Navier-Stokes Dominant Terms (Newton’s force/acceleration terms)

_109(x.p.1)

Vn(x,p.t) = -

® Incompressibility of Water

V.[(d(x,y)+n(x,y, t))f;(x,y, t)} _ _577(2;);, t)




Application to Real Bathymetry in Sunda Strait
Area of Interest: Near Labuhan




Differential Equations for Height and Velocity )))

Are Solved on Finite Element Grid Below ...SOPAR |
® Scalar height PDE solved on grid. From this the velocity is determined

® Solved in MATLAB on Macbook Air laptop
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Sunda Tsunami Height / Velocity Evolution _ 3}2 s
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The radar measures the velocity (on the right)
People care about the tsunami height (on the left)
Go from radar-measured velocity to height through the equations

Tsunami Height Profile Tsunami Velocity Profile

 Normalized height scale on right « Absolute velocity color bar on right
» Velocity vectors/colors normalized
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Radial Velocity Pattern Seen by Single Site _ \2) s
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independently
® Unique radial velocity pattern is seen, guided by bathymetry

® Total velocity & height to be reconstructed from radials via
defining equations and bathymetry
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Application to Real Bathymetry: Gulf of Khambhat ))

Two SeaSonde Sites: Jegri & Wasi-Boursi ... copar .

® Very shallow water over all of Gulf: Much w1der area than Sunda Strait
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Khambhat Tsunami Height/Velocity Evolution

Tsunami comes from West to East & refracts into Gulf -
The radar measures the velocity (on the right)

People care about the tsunami height (on the left)
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Go from radar-measured velocity to height through the equations

Tsunami Height Profile

« Normalized height scale on right
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Application to Kii Channel, Japan: Two
SeaSondes HF Radars in Place
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® Tsunami approached ® ok
i
from the South

® Coastal boundaries on
three sides and shallow =
bathymetry gave rise to =
complex oscillatory
behavior




PDE Solution: FEM Grid and Initial Condition | /<5~

O CE AN SEMNSORS

0.a

0.6

04+

0.2

0.2

1 1 1
-0.48 -0.6 -0.4 -0.2 n n.z2 0.4 0.6 0.4

Single tsunami wave propagates into Channel from South
® Green's function approach, i.e., "delta function'" approximation

Finite-Element Solution Grid Height Initial Condition




Kii Channel Tsunami Height/Velocity Evolution )))
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® Tsunami comes from South, refracts, slows by shallow bathymetry
® Reflections from coasts, Awaji Isl, and steep bathymetry slope

Tsunami Height Profile Tsunami Velocity Profile

 Normalized height scale on right * Velocity strength color bar on right
* Velocity vectors/colors normalized
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8.6 April 2012 Indonesia Event & Weak Tsunami )))

® Propagation & arrival depends on bathymetry (depth) _ {o DAR

® Movie shown is velocity, calculated from model equation used by all
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What Does SeaSonde Contribute to w \))) s
Tsunami Management/Mitigation? [~ """

® Should it be considered a "stand-alone' warning system? No!

® Seismic warning is first signal — however this does not indicate

strength of tsunami

¢ "Far-Field" (deep-ocean-basin) measurements are next, where
possible: bottom pressure sensors and satellite altimetry

® The above are integrated into models that provide coarse warning

e " "




Improvements Needed and Underway in | 32 L
CODAR's Q-Factor Tsunami Algorithms -~

® Integrate our spatial propagation/evolution models into Q-Factor
time-detection algorithm for better warning

® Predict impact time at local radar coastal region from offshore

advance SeaSonde velocity observations




CODAR's Two-Pronged Approachto | _ \))/) b s
Tsunami Software for HF Radar

® Provide alert to warning center before first arrival of
waves at the coast (Belinda Lipa's algorithms)

® Develop longer-term PDE model applied to data to

explain spatial-temporal evolution after first arrival, i.e.,




